Cultural Influences on Mixing Practices

TL;DR: we are presenting a paper at the upcoming AES Convention in Milan on differences in mixes by engineers from different backgrounds, and qualitative analysis of the mixer’s notes as well as the critical listening comments of others.


We recently reviewed research to be presented at the AES 144th Convention, with further blog entries on some of our own contributions, analog-matched EQ and physically derived synthesis of edge tones. Here’s one more preview.

The mixing of multitrack music has been a core research interest of this group for the past ten years. In particular, much of the research in this area relates to the automation or streamlining of various processes which traditionally require significant time and effort from the mix engineer. To do that successfully, however, we need to have an excellent understanding of the process of the mix engineer, and the impact of the various signal manipulations on the perception of the listener. Members of this group have worked on projects that sought to expand this understanding by surveying mix engineers, analysing existing mixes, conducting psychoacoustic tests to optimise specific signal processing parameters, and measuring the subjective response to different mixes of the same song. This knowledge has lead to the creation of novel music production tools, but also just a better grasp of this exceedingly multidimensional and esoteric process.

At the upcoming Convention of the Audio Engineering Society in Milan, 23-26 May 2018, we will present a paper that builds on our previous work into analysis of mix creation and evaluation. Whereas previously the analysis of contrasting mixes was mostly quantitative in nature, this work focuses on the qualitative annotation of mixes and the documentation provided by the respective creators. Using these methods we investigated which mix principles and listening criteria the participants shared, and what the impact of available technology is (fully in the box vs outboard processing available).

We found that the task order, balancing practices, and choice of effects was unique, though some common trends were identified: starting the mix with all faders at 0 dB, creating subgroups, and changing levels and effect parameters for different song sections, to name a few. Furthermore, all mixes were made ‘in the box’, i.e. using only software) even when analogue equipment was available.

Furthermore, the large existing dataset we collected during the last few years (in particular as part of Brecht De Man’s PhD) allowed us to compare mixes from the subjects of this study – students of the Paris Conservatoire – to mixes by students from other institutions. To this end, we used one multitrack recording which has served as source material in several previous experiments. Quantitative analysis of level balancing practices showed no significant deviation between institutions – consistent with previous findings.

The paper is written by Amandine Pras, a collaborator from the University of Lethbridge who is among others an expert on qualitative analysis of music production practices; Brecht De Man, previously a member of this group and now a Research Fellow with our collaborators at Birmingham City University; and Josh Reiss, head of this group. All will be present at the Convention. Do come say hi!


You can already read the paper here:

Amandine Pras, Brecht De Man and Joshua D. Reiss, “A Case Study of Cultural Influences on Mixing Practices,” AES Convention 144, May 2018.

Advertisements

Weird and wonderful research to be unveiled at the 144th Audio Engineering Society Convention

th

Last year, we previewed the142nd and 143rd AES Conventions, which we followed with a wrap-up discussions here and here. The next AES  convention is just around the corner, May 23 to 26 in Milan. As before, the Audio Engineering research team here aim to be quite active at the convention.

These conventions have thousands of attendees, but aren’t so large that you get lost or overwhelmed. Away from the main exhibition hall is the Technical Program, which includes plenty of tutorials and presentations on cutting edge research.

So we’ve gathered together some information about a lot of the events that caught our eye as being unusual, exceptionally high quality involved in, attending, or just worth mentioning. And this Convention will certainly live up to the hype.

Wednesday May 23rd

From 11:15 to 12:45 that day, there’s an interesting poster by a team of researchers from the University of Limerick titled Can Visual Priming Affect the Perceived Sound Quality of a Voice Signal in Voice over Internet Protocol (VoIP) Applications? This builds on work we discussed in a previous blog entry, where they did a perceptual study of DFA Faders, looking at how people’s perception of mixing changes when the sound engineer only pretends to make an adjustment.

As expected given the location, there’s lots of great work being presented by Italian researchers. The first one that caught my eye is the 2:30-4 poster on Active noise control for snoring reduction. Whether you’re a loud snorer, sleep next to someone who is a loud snorer or just interested in unusual applications of audio signal processing, this one is worth checking out.

Do you get annoyed sometimes when driving and the road surface changes to something really noisy? Surely someone should do a study and find out which roads are noisiest so that then we can put a bit of effort into better road design and better in-vehicle equalisation and noise reduction? Well, now its finally happened with this paper in the same session on Deep Neural Networks for Road Surface Roughness Classification from Acoustic Signals.

Thursday, May 24

If you were to spend only one day this year immersing yourself in frontier audio engineering research, this is the day to do it.

How do people mix music differently in different countries? And do people perceive the mixes differently based on their different cultural backgrounds? These are the sorts of questions our research team here have been asking. Find out more in this 9:30 presentation by Amandine Pras. She led this Case Study of Cultural Influences on Mixing Practices, in collaboration with Brecht De Man (now with Birmingham City University) and myself.

Rod Selfridge has been blazing new trails in sound synthesis and procedural audio. He won the Best Student Paper Award at AES 141st Convention and the Best Paper Award at Sound and Music Computing. He’ll give another great presentation at noon on Physically Derived Synthesis Model of an Edge Tone which was also discussed in a recent blog entry.

I love the title of this next paper, Miniaturized Noise Generation System—A Simulation of a Simulation, which will be presented at 2:30pm by researchers from Intel Technology in Gdansk, Poland. This idea of a meta-simulation is not as uncommon as you might think; we do digital emulation of old analogue synthesizers, and I’ve seen papers on numerical models of Foley rain sound generators.

A highlight for our team here is our 2:45 pm presentation, FXive: A Web Platform for Procedural Sound Synthesis. We’ll be unveiling a disruptive innovation for sound design, FXive.com, aimed at replacing reliance on sound effect libraries. Please come check it out, and get in touch with the presenters or any members of the team to find out more.

Immediately following this is a presentation which asks Can Algorithms Replace a Sound Engineer? This is a question the research team here have also investigated a lot, you could even say it was the main focus of our research for several years. The team behind this presentation are asking it in relation to Auto-EQ. I’m sure it will be interesting, and I hope they reference a few of our papers on the subject.

From 9-10:30, I will chair a Workshop on The State of the Art in Sound Synthesis and Procedural Audio, featuring the world’s experts on the subject. Outside of speech and possibly music, sound synthesis is still in its infancy, but its destined to change the world of sound design in the near future. Find out why.

12:15 — 13:45 is a workshop related to machine learning in audio (a subject that is sometimes called Machine Listening), Deep Learning for Audio Applications. Deep learning can be quite a technical subject, and there’s a lot of hype around it. So a Workshop on the subject is a good way to get a feel for it. See below for another machine listening related workshop on Friday.

The Heyser Lecture, named after Richard Heyser (we discussed some of his work in a previous entry), is a prestigious evening talk given by one of the eminent individuals in the field. This one will be presented by Malcolm Hawksford. , a man who has had major impact on research in audio engineering for decades.

Friday

The 9:30 — 11 poster session features some unusual but very interesting research. A talented team of researchers from Ancona will present A Preliminary Study of Sounds Emitted by Honey Bees in a Beehive.

Intense solar activity in March 2012 caused some amazing solar storms here on Earth. Researchers in Finland recorded them, and some very unusual results will be presented in the same session with the poster titled Analysis of Reports and Crackling Sounds with Associated Magnetic Field Disturbances Recorded during a Geomagnetic Storm on March 7, 2012 in Southern Finland.

You’ve been living in a cave if you haven’t noticed the recent proliferation of smart devices, especially in the audio field. But what makes them tick, is there a common framework and how are they tested? Find out more at 10:45 when researchers from Audio Precision will present The Anatomy, Physiology, and Diagnostics of Smart Audio Devices.

From 3 to 4:30, there’s a Workshop on Artificial Intelligence in Your Audio. It follows on from a highly successful workshop we did on the subject at the last Convention.

Saturday

A couple of weeks ago, John Flynn wrote an excellent blog entry describing his paper on Improving the Frequency Response Magnitude and Phase of Analogue-Matched Digital Filters. His work is a true advance on the state of the art, providing digital filters with closer matches to their analogue counterparts than any previous approaches. The full details will be unveiled in his presentation at 10:30.

If you haven’t seen Mariana Lopez presenting research, you’re missing out. Her enthusiasm for the subject is infectious, and she has a wonderful ability to convey the technical details, their deeper meanings and their importance to any audience. See her one hour tutorial on Hearing the Past: Using Acoustic Measurement Techniques and Computer Models to Study Heritage Sites, starting at 9:15.

The full program can be explored on the Convention Calendar or the Convention website. Come say hi to us if you’re there! Josh Reiss (author of this blog entry), John Flynn, Parham Bahadoran and Adan Benito from the Audio Engineering research team within the Centre for Digital Music, along with two recent graduates Brecht De Man and Rod Selfridge, will all be there.

Analogue matched digital EQ: How far can you go linearly?

(Background post for the paper “Improving the frequency response magnitude and phase of
analogue-matched digital filters” by John Flynn & Josh Reiss for AES Milan 2018)

Professional audio mastering is a field that is still dominated by analogue hardware. Many mastering engineers still favour their go-to outboard compressors and equalisers over digital emulations. As a practising mastering engineer myself, I empathise. Quality analogue gear has a proven track record in terms of sonic quality spanning about a century. Even though digital approximations of analogue tools have gotten better, particularly over the past decade, I too have tended to reach for analogue hardware. However, through my research at Queen Mary with Professor Josh Reiss, that is changing.

When modelling an analogue EQ, a lot of focus has been in modelling distortions and other non-linearities, we chose to look at the linear component. Have we reached a ceiling in terms of modelling an analogue prototype filter in the digital domain? Can we do better? We found that yes there was room for improvement and yes we can do better.

The milestone of research in this area is Orfanidis’ 1997 paper “Digital parametric equalizer design with prescribed Nyquist-frequency gain“, the first major improvement over the bilinear transform which has a reknowned ‘cramped’ sound in the high frequencies. Basically, the bilinear transform is what all first generation digital equalisers is based on. It’s high frequencies towards 20kHz drops sharply, giving a ‘closed/cramped’ sound. Orfanidis and later improvements by Massberg [9] & Gunness/Chauhan [10] give a much better approximation of an analogue prototype.

blt

However [9],[10] improve magnitude, they don’t capture analogue phase. Bizarrely, the bilinear transform performs reasonably well on phase. So we knew it was possible.

So the problem is: how do you get a more accurate magnitude match to analogue than [9],[10]? While also getting a good match to phase? Many attempts, including complicated iterative Parks/McClellen filter design approaches, fell flat. It turned out that Occam was right, in this case a simple answer was the better answer.

By combining a matched-z transform, frequency sampling filter design and a little bit of clever coefficient manipulation, we achieved excellent results. A match to the analogue prototype to an arbitrary degree. At low filter lengths you get a filter that performs as well as [9],[10] in magnitude but also matches analogue phase. By using longer filter lengths the match to analogue is extremely precise, in both magnitude and phase (lower error is more accurate)

error-vs

 

Since submitting the post I have released the algorithm in a plugin with my mastering company and been getting informal feedback from other mastering engineers about how this sounds in use.

balance-mastering-analog-magpha-eq-plugin-small-new

Overall the word back has been overwhelmingly positive, with one engineer claiming it to be the “the best sounding plugin EQ on the market to date”. It’s nice know that those long hours staring at decibel error charts have not been in vain.

Are you heading to AES Milan next month? Come up and say hello!

 

The edgiest tone yet…

As my PhD is coming to an end and the writing phase is getting more intense, it seemed about time I described the last of the aeroacoustic sounds I have implemented as a sound effect model. May 24th at the 144th Audio Engineering Society Convention in Milan, I will present ‘Physically Derived Synthesis Model of an Edge Tone.’
The edge tone is the sound created when a planar jet of air strikes an edge or wedge. The edge tone is probably most often seen as means of excitation for flue instruments. These instruments are ones like a recorder, piccolo, flute and pipe organ. For example, in a recorder air is blown by the mouth through a mouthpiece into a planar jet and then onto a wedge. The forces generated couple with the tube body of the recorder and a tone based on the dimension of the tube is generated.

 

Mouthpiece of a recorder

 

The edge tone model I have developed is viewed in isolation rather than coupled to a resonator as in the musical instruments example. While researching the edge tone it seemed clear to me that this tone has not had the same attention as the Aeolian tone I have previously modelled (here) but a volume of research and data was available to help understand and develop this model.

How does the edge tone work?

The most important process in generating the edge tone is the set up of a feedback loop from the nozzle exit to the wedge. This is similar to the process that generates the cavity tone which I discussed here. The diagram below will help with the explanation.

 

Illustration of jet of air striking a wedge

 

The air comes out of the nozzle and travels towards the wedge. A jet of air naturally has some instabilities which are magnified as the jet travels and reaches the wedge. At the wedge, vortices are shed on opposite sides of the wedge and an oscillating pressure pulse is generated. The pressure pulse travels back towards the nozzle and re-enforces the instabilities. At the correct frequency (wavelength) a feedback loop is created and a strong discrete tone can be heard.

 

 

To make the edge tone more complicated, if the air speed is varied or the distance between the nozzle exit to the wedge is varies, different modes exist. The values at which the modes change also exhibit hysteresis – the mode changes up and down do not occur at the same airspeed or distance.

Creating a synthesis model

There are a number of equations defined by researchers from the fluid dynamics field, each unique but depend on an integer mode number. Nowhere in my search did I find a method of predicting the mode number. Unlike previous modelling approaches, I decided to collate all the results I had where the mode number was given, both wind tunnel measurements and computational simulations. These were then input to the Weka machine learning workbench and a decision tree was devised. This was then implemented to predict the mode number.

 

All the prediction equations had a significant error compared to the measured and simulated results so again the results were used to create a new equation to predict the frequency for each mode.

 

With the mode predicted and the subsequent frequency predicted, the actual sound synthesis was generated by noise shaping with a white noise source and a bandpass filter. The Q value for the filter was unknown but, as with the cavity tone, it is known that the more turbulent the flow the smaller and more diffuse the vortices and the wider the band of frequencies around the predicted edge tone is. The Q value for the bandpass was set to be proportional to this.

And what next…?

Unlike the Aeolian tone where I was able to create a number of sound effects, the edge tone has not yet been implemented into a wider model. This is due to time rather than anything else. One area of further development which would be of great interest would be to couple the edge tone model to a resonator to emulate a musical instrument. Some previous synthesis models use a white noise source and an excitation or a signal based on the residual between an actual sample and the model of the resonator.

 

Once a standing wave has been established in the resonator, the edge tone locks in at that frequency rather than the one predicted in the equation. So the predicted edge tone may only be present while a musical note is in the transient state but it is known that this has a strong influence over the timbre and may have interesting results.

 

For an analysis of whistles and how their design affects their sound check out his article. The feedback mechanism described for the edge tone also very similar to the one that generates the hole tone. This is the discrete tone that is generated by a boiling kettle. This is usually a circular jet striking a plate with a circular hole and a feedback loop established.

 

Hole tone form a kettle

 

A very similar tone can be generated by a vertical take-off and landing vehicle when the jets from the lift fans are pointing down to the ground or deck. These are both areas for future development and where interesting sound effects could be made.

 

Vertical take-off of a Harrier jet

 

Sound Synthesis – Are we there yet?

TL;DR. Yes

At the beginning of my PhD, I began to read the sound effect synthesis literature, and I quickly discovered that there was little to no standardisation or consistency in evaluation of sound effect synthesis models – particularly in relations to the sounds they produce. Surely one of the most important aspects of a synthetic system, is whether it can artifically produce a convincing replacement for what it is intended to synthesize. We could have the most intractable and relatable sound model in the world, but if it does not sound anything like it is intended to, then will any sound designers or end users ever use it?

There are many different methods for measuring how effective a sound synthesis model is. Jaffe proposed evaluating synthesis techniques for music based on ten criteria. However, only two of the ten criteria actually consider any sounds made by the synthesiser.

This is crazy! How can anyone know what synthesis method can produce a convincingly realistic sound?

So, we performed a formal evaluation study, where a range of different synthesis techniques where compared in a range of different situations. Some synthesis techniques are indistinguishable from a recorded sample, in a fixed medium environment. In short – Yes, we are there yet. There are sound synthesis methods that sound more realistic than high quality recorded samples. But there is clearly so much more work to be done…

For more information read this paper

Creative projects in sound design and audio effects

This past semester I taught two classes (modules), Sound Design and Digital Audio Effects. In both classes, the final assignment involves creating an original work that involves audio programming and using concepts taught in class. But the students also have a lot of free reign to experiment and explore their own ideas.

The results are always great. Lots of really cool ideas, many of which could lead to a publication, or would be great to listen to regardless of the fact that it was an assignment. Here’s a few examples.

From the Sound Design class;

  • Synthesizing THX’s audio trademark, Deep Note. This is a complex sound, ‘a distinctive synthesized crescendo that glissandos from a low rumble to a high pitch’. It was created by the legendary James Moorer, who is responsible for some of the greatest papers ever published in the Journal of the Audio Engineering Society.
  • Recreating the sound of a Space Shuttle launch, with separate components for ‘Air Burning/Lapping’ and ‘Flame Eruption/Flame Exposing’ by generating the sounds of the Combustion chain and the Exhaust chain.
  • A student created a soundscape inspired by the 1968 Romanian play ‘Jonah (A four scenes tragedy)’,  written by Marin Sorescu. Published in 1968, when Romania was ruled by the communist regime. By carefully modulating the volume of filtered noise, she was able to achieve some great synthesis of waves crashing on a shore.
  • One student made a great drum and bass track, manipulating samples and mixing in some of his own recorded sounds. These included a nice ‘thud’ by filtering the sound of a tightened towel, percussive sounds by shaking rice in a plastic container. and the sizzling sound of frying bacon for tape hiss.
  • Synthesizing the sound of a motorbike, including engine startup, gears and driving sound, gear lever click and indicator.
  • A short audio piece to accompany a ghost story, using synthesised and recorded sounds. What I really like is that the student storyboarded it.

storyboard

  • A train on a stormy day, which had the neat trick of converting a footstep synthesis model into the chugging of a train.
  • The sounds of the London Underground, doors sliding and beeping, bumps and breaks… all fully synthesized.

And from the Digital Audio Effects class;

  • An autotune specifically for bass guitar. We discussed auto-tune and its unusual history previously.
  • Sound wave propagation causes temperature variation, but speed of sound is a function of temperature. Notably, the positive half cycle of a wave (compression) causes an increase in temperature and velocity, while the negative half (rarefaction) causes a decrease in temperature and velocity, turning a sine wave into something like a sawtooth. This effect is only significant in high pressure sound waves. Its also frequency dependent; high frequency components travel faster than low frequency components.
    Mark Daunt created a MIDI instrument as a VST Plug-in that generates sounds based on this shock-wave formation formula. Sliders allow the user to adjust parameters in the formula and use a MIDI keyboard to play tones that express characteristics of the calculated waveforms.

  • Synthesizing applause, a subject which we have discussed here before. The student has been working in this area for another project, but made significant improvements for the assignment, including adding presets for various conditions.
  • A student devised a distortion effect based on waveshaping in the form of a weighted sum of Legendre polynomials. These are interesting functions and her resulting sounds are surprising and pleasing. Its the type of work that could be taken a lot further.
  • One student had a bug in an implementation of a filter. Noticing that it created some interesting sounds, he managed to turn it into a cool original distortion effect.
  • There’s an Octagon-shaped room with strange acoustics here on campus. Using a database of impulse response measurements from the room, one student created a VST plug-in that allows the user to hear how audio sounds for any source and microphone positions. In earlier blog entries, we discussed related topics, acoustic reverberators and anechoic chambers.

Screen Shot 2018-03-22 at 20.21.58-14

  • Another excellent sounding audio effect was a spectral delay using the phase vocoder, with delays applied differently depending on frequency bin. This created a sound like ‘stars falling from the sky’. Here’s a sine sweep before and after the effect is applied.

https://soundcloud.com/justjosh71/sine-sweep-original

There were many other interesting assignments (plucked string effect for piano synthesizer, enhanced chorus effects, inharmonic resonator, an all-in-one plug-in to recreate 80s rock/pop guitar effects…). But this selection really shows both the talent of the students and the possibilities to create new and interesting sounds.

Audio Engineering Society E-library

I try to avoid too much promotion in this blog, but in this case I think its justified. I’m involved in advancing a resource from a non-profit professional organisation, the Audio Engineering Society. They do lots and lots of different things, promoting the science, education and practice of all things audio engineering related. Among others, they’ve been publishing research in the area for almost 70 years, and institutions can get full access to all the content in a searchable library. In recent posts, I’ve written about some of the greatest papers ever published there, Part 1 and Part 2, and about one of my own contributions.

In an ideal world, this would all be Open Access . But publishing still costs money, so the AES support both gold Open Access (free to all, but authors pay Article Processing Charges) and the traditional model, where its free to publish but individuals or institutions subscribe or articles can be purchased individually. AES members get free access. I could write many blog articles just about Open Access (should I?)- its never as straightforward as it seems. At its best it is freely disseminating information for the benefit of all, but at its worst its like Pay to Play, a highly criticised practice for the music industry, and gives publishers an incentive to lower acceptance standards. But for now I’ll just point out that the AES does its absolute best to keep the costs down, regardless of publishing model, and the costs are generally much less than similar publishers.

Anyway, the AES realised that one of the most cost effective ways to get our content out to large communities is through institutional licenses or subscriptions. And we’re missing an opportunity here since we haven’t really promoted this option. And everybody benefits from it; wider dissemination of knowledge and research, more awareness of the AES, better access, etc. With this in mind, the AES issued the following press release, which I have copied verbatim. You can also find it as a tweet, blog entry or facebook post.

AES_ELibrary

AES E-Library Subscriptions Benefit Institutions and Organizations

— The Audio Engineering Society E-Library is the world’s largest collection of audio industry resources, and subscriptions provide access to extensive content for research, product development and education — 

New York, NY, March 22, 2018 — Does your research staff, faculty or students deserve access to the world’s most comprehensive collection of audio information? The continuously growing Audio Engineering Society (AES) E-Library contains over 16,000 fully searchable PDF files documenting the progression of audio research from 1953 to the present day. It includes every AES paper published from every AES convention and conference, as well as those published in the Journal of the Audio Engineering Society. From the phonograph to MP3s, from early concepts of digital audio through its fulfillment as the mainstay of audio production, distribution and reproduction, to leading-edge realization of spatial audio and audio for augmented and virtual reality, the E-Library provides a gateway to both the historical and the forward-looking foundational knowledge that sustains an entire industry.  

The AES E-Library has become the go-to online resource for anyone looking to gain instant access to the vast amount of information gathered by the Audio Engineering Society through research, presentations, interviews, conventions, section meetings and more. “Our academic and research staff, and PhD and undergraduate Tonmeister students, use the AES E-Library a lot,” says Dr. Tim Brookes, Senior Lecturer in Audio & Director of Research Institute of Sound Recording (IoSR) University of Surrey. “It’s an invaluable resource for our teaching, for independent student study and, of course, for our research.” 

“Researchers, academics and students benefit from E-Library access daily,” says Joshua Reiss, Chair of the AES Publications Policy Committee, “while many relevant institutions – academic, governmental or corporate – do not have an institutional license of the AES E-library, which means their staff or students are missing out on all the wonderful content there. We encourage all involved in audio research and investigation to inquire if their libraries have an E-Library subscription and, if not, suggest the library subscribe.” 

E-Library subscriptions can be obtained directly from the AES or through journal bundling services. A subscription allows a library’s users to download any document in the E-Library at no additional cost. 

“As an international audio company with over 25,000 employees world-wide, the AES E-library has been an incredibly valuable resource used by Harman audio researchers, engineers, patent lawyers and others,” says Dr. Sean Olive, Acoustic Research Fellow, Harman International. “It has paid for itself many times over.” 

The fee for an institutional online E-Library subscription is $1800 per year, which is significantly less than equivalent publisher licenses. 

To search the E-library, go to http://www.aes.org/e-lib/

To arrange for an institutional license, contact Lori Jackson directly at lori.jackson@aes.org, or go to http://www.aes.org/e-lib/subscribe/.

 

About the Audio Engineering Society
The Audio Engineering Society, celebrating its 70th anniversary in 2018, now counts over 12,000 members throughout the U.S., Latin America, Europe, Japan and the Far East. The organization serves as the pivotal force in the exchange and dissemination of technical information for the industry. Currently, its members are affiliated with 90 AES professional sections and more than 120 AES student sections around the world. Section activities include guest speakers, technical tours, demonstrations and social functions. Through local AES section events, members experience valuable opportunities for professional networking and personal growth. For additional information visit http://www.aes.org.

Join the conversation and keep up with the latest AES News and Events:
Twitter: #AESorg (AES Official) 
Facebook: http://facebook.com/AES.org